readme

[![Component Registry](https://components.espressif.com/components/espressif/esp-dsp/badge.svg)](https://components.espressif.com/components/espressif/esp-dsp)

# Espressif DSP Library

ESP-DSP is the official DSP library for [ESP32](https://espressif.com/en/products/hardware/esp32/overview) and [ESP32-S3](https://espressif.com/en/products/hardware/esp32s3/overview) chips.

## Overview

ESP-DSP is intended to be used as an [ESP-IDF](https://github.com/espressif/esp-idf) component. For the introduction to ESP-IDF, refer to the [ESP-IDF Programming Guide](https://docs.espressif.com/projects/esp-idf/en/latest/).

The ESP-DSP library includes implementations of the following functions:
- Matrix multiplication: [reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#matrix-operations-apis)
- Dot product: [reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#dot-product), [example](https://github.com/espressif/esp-dsp/tree/master/examples/dotprod)
- FFT: [reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#fft), [example](https://github.com/espressif/esp-dsp/tree/master/examples/fft)
- IIR: [reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#iir), [example](https://github.com/espressif/esp-dsp/tree/master/examples/iir)
- FIR: [reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#fir)
- Vector math operations: [reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#math)
- Kalman filter: [reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html#kalman)

Many of the library functions are written in assembly and are optimized for the CPU configuration used in the ESP32. In addition to the optimized implementations, reference implementations written in ANSI C are provided.

Function implementations are provided for single precision floating point (32-bit float), and 16-bit signed integers.

## Documentation

- [ESP-DSP Overview](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-library.html)
- [ESP-DSP API Reference](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-apis.html)
- [ESP-DSP Benchmarks](https://docs.espressif.com/projects/esp-dsp/en/latest/esp-dsp-benchmarks.html)

Documentation found in the above links is automatically generated from the contents of this repository. If you find that some information is missing or incomplete, please report an issue.

## Installation and Usage

The ESP-DSP library is a component for the [ESP-IDF build system](https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/build-system.html).

The recommended way to use the component is to install it from the [IDF Component Registry](https://components.espressif.com/components/espressif/esp-dsp).

### Adding ESP-DSP component to an existing project

In the project directory, run:
```bash
idf.py add-dependency "espressif/esp-dsp"
```
This will add the esp-dsp component as a dependency to the `main` component of your project. You can also add it by editing the `idf_component.yml` file manually.

### Downloading ESP-DSP examples

You can download the example projects from the IDF Component Registry website or use the `idf.py create-project-from-example` command. For example:

```bash
idf.py create-project-from-example "espressif/esp-dsp:basic_math"
```

Please refer to the [IDF Component Registry](https://components.espressif.com/components/espressif/esp-dsp) for the download links and the instructions.

You can also use Git to clone this repository and find all the examples in the `examples/` subdirectory. For the list of the examples, please see [README.md](examples/README.md) in the examples directory.

### Building and running ESP-DSP examples

Build, flash and monitor as this is usually done for ESP-IDF projects:

```bash
idf.py -p PORT flash monitor
```

where `PORT` is the UART port name of your development board, such as `/dev/ttyUSB0` or `COM1`. 

Note that you need to set up ESP-IDF before building the project. Refer to the [ESP-IDF Getting Started Guide](https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html) if you don't have the environment set up yet.

## Reporting Issues

If you have found an issue in ESP-DSP, or wish to submit an enhancement request, please use the [Issues](https://github.com/espressif/esp-dsp/issues) section on Github.

For general questions related to this library, please use the [esp32.com forum](https://esp32.com/).

## Contributing to ESP-DSP

Please check [CONTRIBUTING.md](CONTRIBUTING.md) if you'd like to contribute to ESP-DSP.

## Copyrights and License

All original source code in this repository is Copyright (C) 2018-2023 Espressif Systems. This source code is licensed under the Apache License 2.0 as described in the file LICENSE.

changelog

# Esp-dsp Changelog

All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [Unreleased] 

### Added
- ci: add pre-commit hooks

### Changed

### Removed

## [1.4.11] 2024-02-21

### Added
- Fixed point functions mul/add/sub for esp32 and esp32s3

## [1.4.10] 2023-11-30

### Added
- Demo application for ESP32-S3-BOX-Lite Board

## [1.4.9] 2023-11-09

### Added
- New methods for Mat class to support sub-matrix operations

## [1.4.8] 2023-10-16

### Added
- Audio amplifier application for the esp32-LyraT board

## [1.4.7] 2023-07-13

### Changed
- Demo applications added to the component manager as examples 

## [1.4.6] 2023-07-11

### Added
- FIR f32 decimation filter optimized for esp32s3

### Changed
- In dsps_fird_init_f32() function the parameter start_pos removed
- In dsps_fird_f32() function the coefficients order changed to backward order

## [1.4.5] 2023-07-11

### Added
- Application for Azure IoT board
- Add Esp32-LyraT board application 

## [1.4.4] 2023-07-03

### Changed
- Update documentation build

## [1.4.1] 2023-06-30

### Fixed
- Add Bi-Quad for esp32s3 into common CMakeLists.txt 


## [1.4.0] 2023-03-29

### Added
- Complex signal generator dsps_cplx_gen()
- FIR f32 filter optimized for esp32s3
- Memcpy and Memset optimized for esp32s3

### Fixed
- Fix in tests to pass
- Minimum coeffcient length for fird_s16
- Include malloc.h into dsps_fft4r_fc32_ansi.c
- Fix for calculation length for dsps_corr_f32_axxx

### Changed

### Removed

## [1.3.0] 2023-03-10

### Added

- Fixed point FIR filter with decimation
- Update tag to 1.2.1 for component manager
- Extend dsp_power_of_two() to 32-bit value 

### Fixed

- add various links to idf_component.yml, exclude unnecessary files
- cmake: update component CMakeLists.txt file syntax to IDF v4.x+
- docs: move instructions for contributors into CONTRIBUTING.md
- docs: update README.md to use IDF component manager for installation
- drop IDF v4.0 and v4.1 support, add a CI build with IDF release/v5.0
- examples: remove GNU Make instructions from README files
- examples: allow examples to be installed from the component manager
- Fix for fft_cplx2reC_f32 function
- Wno-format-fix related errors
- Wrong path for extra component directory

### Changed

### Removed

## [1.2.0] 2022-09-22

readme of applications/azure_board_apps/apps/3d_graphics example

                                        
                                        # ESP-DSP ESP32-Azure IoT kit 3d graphics demo application

The demo is developed for [ESP32-Azure IoT kit](https://github.com/espressif/esp-bsp/tree/master/esp32_azure_iot_kit) development board and is demonstrating the usage of matrices with `ESP-DSP` `Mat` class, Kalman filter and basic 3D graphics.

The 3D Graphics demo displays a 2D graphics, converted to 3D as a 3D rotating object, on the development board's display. Button press changes the rotation direction of the 3D object. Run the menuconfig using the following command: 

    idf.py mencuonfig

In the menuconfig's menu item `Demo user configuration` select which 3D object to display. It's either a 3D cube, or ESP logo, or a user-defined graphics. Getting the user-defined graphics is described in an [example](../../graphics/img_to_3d_matrix/example/)

## Running the demo

To start the demo, run the following command:

    idf.py build flash monitor

The expected output is the following:

    I (570) 3D image demo: Selected 3D image - ESP Logo
    I (570) 3D image demo: Showing ESP text
    I (6730) 3D image demo: Showing 3D image

Note, that the first line `Selected 3D image` from the expected output depends on the user's Kconfing menu selection

<div align="center">
  <img src= "applications/azure_board_apps/apps/3d_graphics/3d_graphics.gif">
</div>

                                    

readme of applications/azure_board_apps/apps/kalman_filter example

                                        
                                        # ESP-DSP ESP32-Azure IoT kit Kalman filter demo application

The demo is developed for [ESP32-Azure IoT kit](https://github.com/espressif/esp-bsp/tree/master/esp32_azure_iot_kit) development board and is demonstrating the usage of matrices with `ESP-DSP` `Mat` class, Kalman filter and basic 3D graphics.

The Kalman filter demo displays a 2D graphics, converted to 3D as a 3D object, on the development board's display. The 3D object follows the movements of the development board, where the Kalman filter is used for processing the output signals of the IMU sensors accommodated on the development board. The 3D object rotation is calculated by the Kalman filter class methods. All 3 IMU sensors present on the dev board (accelerometer, gyroscope and magnetometer) are used for sensing the development board's position.


If the board is inactive (no, or very low rotation is detected) for a set period of time, the demo enters an "Idle" state, in which a 3D rotating object is displayed. Once a certain set level of the board's rotation is detected, the demo enters a normal, "Active", state.

For the project settings, run the menuconfig using the following command: 

    idf.py mencuonfig

In the menuconfig's menu item `Demo user configuration` select which 3D object to display. It's either 3D cube, or ESP logo, or a user-defined graphics. Getting the user-defined 3D object is described in the [3D Graphics demo](../3d_graphics)

## Kalman filter
#### Calibration

The filter must be calibrated before the first run, which takes several minutes. But the calibration process before each run can be omitted by calibrating the filter once, saving Kalman's filter state vectors to the NVS, and loading those vectors back into the Kalman filter before the run. In addition, every 5 minutes a current state vectors are saved into the flash memory.

## Running the demo

To start the demo, run the following command:

    idf.py build flash monitor

The expected output is the following:

    I (589) Kalman filter demo: Selected 3D image - 3D cube
    I (590) Kalman filter demo: Filter state vectors present in the NVS
    I (592) Kalman filter demo: Loading state vectors into the filter structure
    I (604) Kalman filter demo: State vectors loaded from the NVS
    I (606) Barometer: disabled
    I (619) Board status: board put to active mode
    I (95780) Board status: board put to idle mode
    I (300619) Kalman filter demo: State vectors saved to NVS

Note, that the first line `Selected 3D image` from the expected output depends on the user's Kconfing menu selection

To start the demo and run the initial Kalman filter calibration, one must erase the flash memory, to remove the previously stored Kalman filter's state vectors. To do so, run the following command:

    idf.py erase_flash build flash monitor

The expected output is the following:

    I (592) Kalman filter demo: Selected 3D image - 3D cube
    I (595) Kalman filter demo: Filter state vectors not present in the NVS
    I (595) Kalman filter demo: Starting Kalman filter calibration loop
    I (100699) Kalman filter demo: Exiting Kalman filter calibration loop
    I (100894) Kalman filter demo: Estimated gyroscope bias error [deg/sec]: -0.020715	-0.000431	-0.022452
    I (100900) Kalman filter demo: State vectors saved to the NVS
    I (100900) Barometer: disabled
    I (100911) Board status: board put to active mode
    I (196072) Board status: board put to idle mode
    I (400912) Kalman filter demo: State vectors saved to NVS

<div align="center">
  <img src= "applications/azure_board_apps/apps/kalman_filter/kalman_filter.gif">
</div>
                                    

readme of applications/lyrat_board_app example

                                        
                                        # ESP-DSP LyraT Board audio processing application

The demo applications are developed for the ESP32-LyraT development board and demonstrate the usage of IIR filters from the ESP-DSP library.
This example showcases how to use IIR filter functionality to process audio stream data.
To hear the audio please connect headphones or speakers to the ESP32-LyraT audio output.
The example performs the following steps:

1. Read samples from a file
    * read samples from file
    * write audio samples to the triple buffer
2. Process audio samples
    * process volume/bass/treble
    * apply digital limiter to the audio data
    * control audio buffer overflow
3. Pass samples to the audio codec 

To control the volume/bass/treble, please select the value by press 'Set' button and adjust the value by '+/-' buttons.

## The Triple Audio Buffer

In audion processing, it's possible to have situation when one task write data to the processing buffer (processing task), and another task read data from the same buffer, and still in reading process.
Triple buffering is a technique used in audio processing to minimize latency and ensure smooth playback. It involves using three buffers to store audio data. Here's a description of how it works:

* Buffer A: This buffer holds the audio data that is currently being processed by the audio system. It is typically filled with samples from the audio source and processed in real-time.

* Buffer B: When Buffer A is full, the audio system begins reading from Buffer A and starts processing the data. At the same time, Buffer B is filled with new audio samples from the source.

* Buffer C: Once Buffer B is full, the audio system switches its attention to Buffer B and continues processing data. Buffer C is then filled with the latest audio samples.

The cycle continues, with the audio system always processing the data from a buffer while the other two buffers are being filled. This approach helps ensure a continuous and uninterrupted audio playback, as there is always a buffer ready to be processed. It reduces the chances of audio glitches or dropouts caused by delays in reading or processing the audio data.

Triple buffering is particularly useful when working with real-time audio processing applications, where low latency and uninterrupted playback are crucial.

## Audio Processing Flow

The audio processing flow contains next blocks:
1. Audio processing task
    * Read data from file and store to the triple buffer
    * Read from triple buffer and concert data from int16_t to float
    * Process bass
    * Process treble
    * Process volume
    * Apply digital limiter
    * Convert data from float to int16_t and store to the triple buffer
2. Audio output task
    * Write data from triple buffer to audio codec
3. Buttons control task
    * React on buttons and adjust the control values
    * Calculates IIR filter coefficients

## How to use the example

### Hardware required

This example require LyraT development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

                                    

readme of applications/spectrum_box_lite example

                                        
                                        # ESP-DSP ESP32-S3-BOX-Lite Board demo application

The demo applications are developed for the ESP32-S3-BOX-Lite development board and demonstrate the usage of FFT functions from the ESP-DSP library.
This example showcases how to use FFT functionality to process audio stream data.
The application record sound from two microphones and show the spectrum from them at display as 2D plot.

## Audio Processing Flow

The audio processing flow contains next blocks:
1. Audio processing task
    * Read left and right channel data from the microphone
    * Apply window multiplication to both channels
    * Process FFT and apply bit reverse
    * Split complex spectrum from two channels to two spectrums of two real channels
    * Calculate absolute spectrum and convert it to dB
    * Calculate moving average of the spectrum
2. Image Display Task
    * Read data from the 
    * Write data from triple buffer to audio codec

## How to use the example

Just flash the application to the ESP32-S3-BOX-Lite development board, and play some music around or start to speak to the board microphones.
The display will show the real-time spectrum.
The microphone sensitivity could be adjusted in the code.

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

                                    

readme of apps/3d_graphics example

                                        
                                        # ESP-DSP ESP32-Azure IoT kit 3d graphics demo application

The demo is developed for [ESP32-Azure IoT kit](https://github.com/espressif/esp-bsp/tree/master/esp32_azure_iot_kit) development board and is demonstrating the usage of matrices with `ESP-DSP` `Mat` class, Kalman filter and basic 3D graphics.

The 3D Graphics demo displays a 2D graphics, converted to 3D as a 3D rotating object, on the development board's display. Button press changes the rotation direction of the 3D object. Run the menuconfig using the following command: 

    idf.py mencuonfig

In the menuconfig's menu item `Demo user configuration` select which 3D object to display. It's either a 3D cube, or ESP logo, or a user-defined graphics. Getting the user-defined graphics is described in an [example](../../graphics/img_to_3d_matrix/example/)

## Running the demo

To start the demo, run the following command:

    idf.py build flash monitor

The expected output is the following:

    I (570) 3D image demo: Selected 3D image - ESP Logo
    I (570) 3D image demo: Showing ESP text
    I (6730) 3D image demo: Showing 3D image

Note, that the first line `Selected 3D image` from the expected output depends on the user's Kconfing menu selection

<div align="center">
  <img src= "applications/azure_board_apps/apps/3d_graphics/3d_graphics.gif">
</div>

                                    

readme of apps/kalman_filter example

                                        
                                        # ESP-DSP ESP32-Azure IoT kit Kalman filter demo application

The demo is developed for [ESP32-Azure IoT kit](https://github.com/espressif/esp-bsp/tree/master/esp32_azure_iot_kit) development board and is demonstrating the usage of matrices with `ESP-DSP` `Mat` class, Kalman filter and basic 3D graphics.

The Kalman filter demo displays a 2D graphics, converted to 3D as a 3D object, on the development board's display. The 3D object follows the movements of the development board, where the Kalman filter is used for processing the output signals of the IMU sensors accommodated on the development board. The 3D object rotation is calculated by the Kalman filter class methods. All 3 IMU sensors present on the dev board (accelerometer, gyroscope and magnetometer) are used for sensing the development board's position.


If the board is inactive (no, or very low rotation is detected) for a set period of time, the demo enters an "Idle" state, in which a 3D rotating object is displayed. Once a certain set level of the board's rotation is detected, the demo enters a normal, "Active", state.

For the project settings, run the menuconfig using the following command: 

    idf.py mencuonfig

In the menuconfig's menu item `Demo user configuration` select which 3D object to display. It's either 3D cube, or ESP logo, or a user-defined graphics. Getting the user-defined 3D object is described in the [3D Graphics demo](../3d_graphics)

## Kalman filter
#### Calibration

The filter must be calibrated before the first run, which takes several minutes. But the calibration process before each run can be omitted by calibrating the filter once, saving Kalman's filter state vectors to the NVS, and loading those vectors back into the Kalman filter before the run. In addition, every 5 minutes a current state vectors are saved into the flash memory.

## Running the demo

To start the demo, run the following command:

    idf.py build flash monitor

The expected output is the following:

    I (589) Kalman filter demo: Selected 3D image - 3D cube
    I (590) Kalman filter demo: Filter state vectors present in the NVS
    I (592) Kalman filter demo: Loading state vectors into the filter structure
    I (604) Kalman filter demo: State vectors loaded from the NVS
    I (606) Barometer: disabled
    I (619) Board status: board put to active mode
    I (95780) Board status: board put to idle mode
    I (300619) Kalman filter demo: State vectors saved to NVS

Note, that the first line `Selected 3D image` from the expected output depends on the user's Kconfing menu selection

To start the demo and run the initial Kalman filter calibration, one must erase the flash memory, to remove the previously stored Kalman filter's state vectors. To do so, run the following command:

    idf.py erase_flash build flash monitor

The expected output is the following:

    I (592) Kalman filter demo: Selected 3D image - 3D cube
    I (595) Kalman filter demo: Filter state vectors not present in the NVS
    I (595) Kalman filter demo: Starting Kalman filter calibration loop
    I (100699) Kalman filter demo: Exiting Kalman filter calibration loop
    I (100894) Kalman filter demo: Estimated gyroscope bias error [deg/sec]: -0.020715	-0.000431	-0.022452
    I (100900) Kalman filter demo: State vectors saved to the NVS
    I (100900) Barometer: disabled
    I (100911) Board status: board put to active mode
    I (196072) Board status: board put to idle mode
    I (400912) Kalman filter demo: State vectors saved to NVS

<div align="center">
  <img src= "applications/azure_board_apps/apps/kalman_filter/kalman_filter.gif">
</div>
                                    

readme of azure_board_apps/apps/3d_graphics example

                                        
                                        # ESP-DSP ESP32-Azure IoT kit 3d graphics demo application

The demo is developed for [ESP32-Azure IoT kit](https://github.com/espressif/esp-bsp/tree/master/esp32_azure_iot_kit) development board and is demonstrating the usage of matrices with `ESP-DSP` `Mat` class, Kalman filter and basic 3D graphics.

The 3D Graphics demo displays a 2D graphics, converted to 3D as a 3D rotating object, on the development board's display. Button press changes the rotation direction of the 3D object. Run the menuconfig using the following command: 

    idf.py mencuonfig

In the menuconfig's menu item `Demo user configuration` select which 3D object to display. It's either a 3D cube, or ESP logo, or a user-defined graphics. Getting the user-defined graphics is described in an [example](../../graphics/img_to_3d_matrix/example/)

## Running the demo

To start the demo, run the following command:

    idf.py build flash monitor

The expected output is the following:

    I (570) 3D image demo: Selected 3D image - ESP Logo
    I (570) 3D image demo: Showing ESP text
    I (6730) 3D image demo: Showing 3D image

Note, that the first line `Selected 3D image` from the expected output depends on the user's Kconfing menu selection

<div align="center">
  <img src= "applications/azure_board_apps/apps/3d_graphics/3d_graphics.gif">
</div>

                                    

readme of azure_board_apps/apps/kalman_filter example

                                        
                                        # ESP-DSP ESP32-Azure IoT kit Kalman filter demo application

The demo is developed for [ESP32-Azure IoT kit](https://github.com/espressif/esp-bsp/tree/master/esp32_azure_iot_kit) development board and is demonstrating the usage of matrices with `ESP-DSP` `Mat` class, Kalman filter and basic 3D graphics.

The Kalman filter demo displays a 2D graphics, converted to 3D as a 3D object, on the development board's display. The 3D object follows the movements of the development board, where the Kalman filter is used for processing the output signals of the IMU sensors accommodated on the development board. The 3D object rotation is calculated by the Kalman filter class methods. All 3 IMU sensors present on the dev board (accelerometer, gyroscope and magnetometer) are used for sensing the development board's position.


If the board is inactive (no, or very low rotation is detected) for a set period of time, the demo enters an "Idle" state, in which a 3D rotating object is displayed. Once a certain set level of the board's rotation is detected, the demo enters a normal, "Active", state.

For the project settings, run the menuconfig using the following command: 

    idf.py mencuonfig

In the menuconfig's menu item `Demo user configuration` select which 3D object to display. It's either 3D cube, or ESP logo, or a user-defined graphics. Getting the user-defined 3D object is described in the [3D Graphics demo](../3d_graphics)

## Kalman filter
#### Calibration

The filter must be calibrated before the first run, which takes several minutes. But the calibration process before each run can be omitted by calibrating the filter once, saving Kalman's filter state vectors to the NVS, and loading those vectors back into the Kalman filter before the run. In addition, every 5 minutes a current state vectors are saved into the flash memory.

## Running the demo

To start the demo, run the following command:

    idf.py build flash monitor

The expected output is the following:

    I (589) Kalman filter demo: Selected 3D image - 3D cube
    I (590) Kalman filter demo: Filter state vectors present in the NVS
    I (592) Kalman filter demo: Loading state vectors into the filter structure
    I (604) Kalman filter demo: State vectors loaded from the NVS
    I (606) Barometer: disabled
    I (619) Board status: board put to active mode
    I (95780) Board status: board put to idle mode
    I (300619) Kalman filter demo: State vectors saved to NVS

Note, that the first line `Selected 3D image` from the expected output depends on the user's Kconfing menu selection

To start the demo and run the initial Kalman filter calibration, one must erase the flash memory, to remove the previously stored Kalman filter's state vectors. To do so, run the following command:

    idf.py erase_flash build flash monitor

The expected output is the following:

    I (592) Kalman filter demo: Selected 3D image - 3D cube
    I (595) Kalman filter demo: Filter state vectors not present in the NVS
    I (595) Kalman filter demo: Starting Kalman filter calibration loop
    I (100699) Kalman filter demo: Exiting Kalman filter calibration loop
    I (100894) Kalman filter demo: Estimated gyroscope bias error [deg/sec]: -0.020715	-0.000431	-0.022452
    I (100900) Kalman filter demo: State vectors saved to the NVS
    I (100900) Barometer: disabled
    I (100911) Board status: board put to active mode
    I (196072) Board status: board put to idle mode
    I (400912) Kalman filter demo: State vectors saved to NVS

<div align="center">
  <img src= "applications/azure_board_apps/apps/kalman_filter/kalman_filter.gif">
</div>
                                    

readme of basic_math example

                                        
                                        # Basic Math Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use basic math functions from esp-dsp library. Example does the following steps:

1. Initialize the library
2. Initialize input signals with 1024 samples
3. Apply window to input signal by standard C loop.
4. Calculate FFT for 1024 complex samples and show the result
5. Show results on the plots
6. Apply window to input signal by basic math functions dsps_mul_f32 and dsps_mulc_f32.
7. Calculate FFT for 1024 complex samples
8. Show results on the plots

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is an typical example console output. 

```bash
I (132) main: *** Start Example. ***
I (132) main: *** Multiply tone signal with Hann window by standard C loop. ***
I (152) view: Data min[432] = -173.749878, Data max[205] = 23.849705
 ________________________________________________________________
0                         |                                      |
1                         |                                      |
2                         |                                      |
3                         ||                                     |
4                        | |                                     |
5                       ||  |                                    |
6                    |||     ||                                  |
7               |||||          ||||                              |
8|||||||||||||||                   ||||||                        |
9                                        |||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (162) view: Plot: Length=512, min=-120.000000, max=40.000000
I (162) main: *** Multiply tone signal with Hann window by esp-dsp basic math functions. ***
I (162) view: Data min[432] = -173.749878, Data max[205] = 23.849705
 ________________________________________________________________
0                         |                                      |
1                         |                                      |
2                         |                                      |
3                         ||                                     |
4                        | |                                     |
5                       ||  |                                    |
6                    |||     ||                                  |
7               |||||          ||||                              |
8|||||||||||||||                   ||||||                        |
9                                        |||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (172) view: Plot: Length=512, min=-120.000000, max=40.000000
I (172) main: *** End Example. ***
```

                                    

readme of dotprod example

                                        
                                        # Dot Product Calculation Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use dotprod dsps_dotprod_f32 from esp-dsp library. Example does the following steps:

1. Initialize the input arrays
2. Calculate dot product of two arrays
3. Compare results and calculate execution time in cycles.

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is an typical example console output. 

```
I (55) main: Start Example.
I (55) main: The sum of 101 elements from 0..100 = 5050.000000
I (55) main: Operation for 101 samples took 1381 cycles
I (65) main: End Example.
```

                                    

readme of fft example

                                        
                                        # FFT Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use FFT functionality from esp-dsp library. Example does the following steps:

1. Initialize the library
2. Initialize input signals with 1024 samples: one 0 dB, second with -20 dB
3. Combine two signals as one complex input signal and apply window to input signals paar.
4. Calculate FFT for 1024 complex samples
5. Apply bit reverse operation for output complex vector
6. Split one complex FFT output spectrum to two real signal spectrums 
7. Show results on the plots
8. Show execution time of FFT

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is an typical example console output. 

```
I (59) main: Start Example.
W (89) main: Signal x1
I (89) view: Data min[495] = -162.760925, Data max[164] = 23.938747
 ________________________________________________________________
0                                                                |
1                    |                                           |
2                    |                                           |
3                    |                                           |
4                    |                                           |
5                    |                                           |
6                   | |                                          |
7                   | |                                          |
8                  || ||                                         |
9||||||||||||||||||     ||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (159) view: Plot: Length=512, min=-60.000000, max=40.000000
W (169) main: Signal x2
I (169) view: Data min[502] = -164.545135, Data max[205] = 3.857752
 ________________________________________________________________
0                                                                |
1                                                                |
2                                                                |
3                         |                                      |
4                         |                                      |
5                         |                                      |
6                         |                                      |
7                         ||                                     |
8                        | |                                     |
9||||||||||||||||||||||||   ||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (249) view: Plot: Length=512, min=-60.000000, max=40.000000
W (249) main: Signals x1 and x2 on one plot
I (259) view: Data min[505] = -159.215271, Data max[164] = 23.938747
 ________________________________________________________________
0                                                                |
1                    |                                           |
2                    |                                           |
3                    |    |                                      |
4                    |    |                                      |
5                    |    |                                      |
6                   | |   |                                      |
7                   | |   ||                                     |
8                  || || | |                                     |
9||||||||||||||||||     |   ||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (339) view: Plot: Length=512, min=-60.000000, max=40.000000
I (339) main: FFT for 1024 complex points take 140472 cycles
I (349) main: End Example.
```

                                    

readme of fft4real example

                                        
                                        # FFT 4 Real Input Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use FFT functionality from esp-dsp library. Example does the following steps:

1. Initialize the library
2. Initialize input signals with 1024 samples: one 0 dB, second with -20 dB
3. Calculate FFT Radix-2 for 1024 complex samples
4. Calculate FFT Radix-4 for 1024 complex samples
5. Apply bit reverse operation for output complex vectors
6. Show results on the plots
7. Show execution time of FFTs

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is an typical example console output. 

```
I (344) main: Start Example.
W (424) main: Signal x1
I (424) view: Data min[673] = -103.113297, Data max[328] = 20.490950
 ________________________________________________________________
0                                                                |
1                    |                                           |
2                    |                                           |
3                    |                                           |
4                    |                                           |
5                    |                                           |
6                    |                                           |
7                   | |                                          |
8                   | |                                          |
9|||||||||||||||||||   |||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (494) view: Plot: Length=1024, min=-60.000000, max=40.000000
W (504) main: Signal x2
I (504) view: Data min[582] = -103.113297, Data max[328] = 20.490950
 ________________________________________________________________
0                                                                |
1                    |                                           |
2                    |                                           |
3                    |                                           |
4                    |                                           |
5                    |                                           |
6                    |                                           |
7                   | |                                          |
8                   | |                                          |
9|||||||||||||||||||   |||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (584) view: Plot: Length=1024, min=-60.000000, max=40.000000
W (593) main: Difference between signals x1 and x2 on one plot
I (594) view: Data min[0] = 0.000000, Data max[392] = 0.313019
 ________________________________________________________________
0                                                                |
1                                                                |
2                                                                |
3                                                                |
4                                                                |
5                                                                |
6                                                                |
7                                                                |
8----------------------------------------------------------------|
9                                                                |
 0123456789012345678901234567890123456789012345678901234567890123
I (674) view: Plot: Length=1024, min=0.000000, max=40.000000
I (674) main: FFT Radix 2 for 1024 complex points take 168652 cycles
I (684) main: FFT Radix 4 for 1024 complex points take 104665 cycles
I (694) main: End Example.
```

                                    

readme of fft_window example

                                        
                                        # FFT Window Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use Window and FFT functionality from esp-dsp library. Example does the following steps:

1. Initialize the library
2. Initialize input signals with 1024 samples
3. Apply window to input signal.
4. Calculate FFT for 1024 complex samples
5. Apply bit reverse operation for output complex vector
6. Split one complex FFT output spectrum to two real signal spectrums 
7. Show results on the plots

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is an typical example console output. 

```
I (128) main: Start Example.
W (128) main: Hann Window
I (128) view: Data min[256] = -inf, Data max[1] = 24.086628
 ________________________________________________________________
0|                                                               |
1|                                                               |
2|                                                               |
3|                                                               |
4|                                                               |
5 |                                                              |
6  |                                                             |
7   |||||                                                        |
8        |||||||||||||||                                         |
9                       ||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (138) view: Plot: Length=512, min=-120.000000, max=40.000000
W (138) main: Blackman Window
I (148) view: Data min[355] = -165.295654, Data max[1] = 24.083012
 ________________________________________________________________
0|                                                               |
1|                                                               |
2|                                                               |
3|                                                               |
4|                                                               |
5|                                                               |
6 |                                                              |
7  |||                                                           |
8     |||||||||                                                  |
9              |||||||||||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (158) view: Plot: Length=512, min=-120.000000, max=40.000000
W (158) main: Blackman-Harris Window
I (168) view: Data min[128] = -inf, Data max[1] = 23.874702
 ________________________________________________________________
0|                                                               |
1|                                                               |
2|                                                               |
3|                                                               |
4|                                                               |
5|                                                               |
6|                                                               |
7||                                                              |
8| ||||                                                          |
9      |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (178) view: Plot: Length=512, min=-120.000000, max=40.000000
W (178) main: Blackman-Nuttall Window
I (188) view: Data min[128] = -inf, Data max[1] = 23.890663
 ________________________________________________________________
0|                                                               |
1|                                                               |
2|                                                               |
3|                                                               |
4|                                                               |
5|                                                               |
6|                                                               |
7 ||                                                             |
8   |||| |                                                       |
9       | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (198) view: Plot: Length=512, min=-120.000000, max=40.000000
W (198) main: Nuttall Window
I (208) view: Data min[203] = -175.147400, Data max[1] = 23.858671
 ________________________________________________________________
0|                                                               |
1|                                                               |
2|                                                               |
3|                                                               |
4|                                                               |
5|                                                               |
6|                                                               |
7||                                                              |
8  |||                                                           |
9     ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (218) view: Plot: Length=512, min=-120.000000, max=40.000000
W (218) main: Flat-Top Window
I (228) view: Data min[256] = -inf, Data max[1] = 22.490753
 ________________________________________________________________
0|                                                               |
1|                                                               |
2|                                                               |
3|                                                               |
4|                                                               |
5|                                                               |
6|                                                               |
7 ||                                                             |
8   |||||                                                        |
9        |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
 0123456789012345678901234567890123456789012345678901234567890123
I (238) view: Plot: Length=512, min=-120.000000, max=40.000000
I (238) main: End Example.
```

                                    

readme of fir example

                                        
                                        # FIR Filter Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use FIR filter functionality from esp-dsp library. Example does the following steps:

1. Initialize the FFT library
2. Initialize input signal
    * 1st Sine wave (f = 0.2Fs)
    * 2nd Sine wave (f = 0.4Fs)
    * Combine the waves 
3. Show input signal
    * Calculate windows coefficients
    * Apply the windowing to the input signal
    * Do the FFT
    * Show the frequency response on a plot
    * Calculate execution performance
4. Show filtered signal
    * Initialize the FIR filter library
    * Calculate Windowed-Sinc coefficients of FIR filter
    * Apply the FIR filter to the input signal
    * Do the FFT
    * Show the frequency response on a plot
    * Calculate execution performance

## How to use the example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is a typical example of console output. 

```
I (340) main: Start Example.
I (400) view: Data min[388] = -108.419342, Data max[205] = 30.267143
 ________________________________________________________________
0                         |                         |            |
1                         |                        ||            |
2                         ||                       ||            |
3                         ||                       ||            |
4                         ||                       ||            |
5                         ||                       |||           |
6                       || ||                     |   |          |
7||||||||||||||||||||||||    ||||||||||||||||||||||   ||||||||||||
8                                                                |
9                                                                |
 0123456789012345678901234567890123456789012345678901234567890123
I (470) view: Plot: Length=512, min=-120.000000, max=40.000000


I (490) view: Data min[254] = -114.853371, Data max[205] = 27.247583
 ________________________________________________________________
0                                                   |            |
1                                                  |             |
2                                                  |             |
3                                                  | |           |
4                                                  | |           |
5                                                  | |           |
6                         |                     |||  |||         |
7|||||||||||||||||||||||||||||||||||||||||||||||     |  |||||    |
8                                                            |||||
9                                                                |
 0123456789012345678901234567890123456789012345678901234567890123
I (560) view: Plot: Length=256, min=-120.000000, max=40.000000
I (560) main: FIR for 1024 samples and decimation 2 takes 763647 cycles
I (570) main: End Example.

```

                                    

readme of iir example

                                        
                                        # IIR Filter Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use IIR filters functionality from esp-dsp library. Example does the following steps:

1. Initialize the library
2. Initialize input signal
3. Show LPF filter with Q factor 1
    * Calculate iir filter coefficients
    * Filter the input test signal (delta function)
    * Shows impulse response on the plot
    * Shows frequency response on the plot
    * Calculate execution performance
4. The same for LPF filter with Q factor 10

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is an typical example console output. 

```
I (58) main: Start Example.
I (58) main: Impulse response of IIR filter with F=0.100000, qFactor=1.000000
I (68) view: Data min[8] = -0.060052, Data max[2] = 0.333517
 ________________________________________________________________
0                                                                |
1                                                                |
2 -                                                              |
3- -                                                             |
4   -------------------------------------------------------------|
5                                                                |
6                                                                |
7                                                                |
8                                                                |
9                                                                |
 0123456789012345678901234567890123456789012345678901234567890123
I (138) view: Plot: Length=128, min=-1.000000, max=1.000000
I (148) view: Data min[511] = -149.983795, Data max[0] = 0.000000
 ________________________________________________________________
0                                                                |
1                                                                |
2-----------------                                               |
3                 ----------                                     |
4                           -------------                        |
5                                        ----------              |
6                                                  -------       |
7                                                         ---    |
8                                                            --  |
9                                                              --|
 0123456789012345678901234567890123456789012345678901234567890123
I (228) view: Plot: Length=512, min=-100.000000, max=0.000000
I (228) main: IIR for 1024 samples take 20276 cycles
I (238) main: Impulse response of IIR filter with F=0.100000, qFactor=10.000000
I (248) view: Data min[7] = -0.453739, Data max[2] = 0.526114
 ________________________________________________________________
0                                                                |
1                                                                |
2 -    -                                                         |
3- -  - -  ---  ---   -    -                                     |
4- -  - -            - ---- -------------------------------------|
5   --   --   --   --                                            |
6                                                                |
7                                                                |
8                                                                |
9                                                                |
 0123456789012345678901234567890123456789012345678901234567890123
I (318) view: Plot: Length=128, min=-1.000000, max=1.000000
I (328) view: Data min[511] = -149.480377, Data max[0] = 0.000000
 ________________________________________________________________
0            --                                                  |
1          --  -                                                 |
2----------     -----                                            |
3                    --------                                    |
4                            ------------                        |
5                                        ----------              |
6                                                  -------       |
7                                                         ---    |
8                                                            --  |
9                                                              --|
 0123456789012345678901234567890123456789012345678901234567890123
I (408) view: Plot: Length=512, min=-100.000000, max=0.000000
I (408) main: IIR for 1024 samples take 17456 cycles
I (418) main: End Example.

```

                                    

readme of kalman example

                                        
                                        # Extended Kalman Filter

This example emulate system with IMU sensors and show how to use Extended Kalman Filter (EKF), with 13 values states vector,
to estimate gyroscope errors and calculate system attitude.
Also, this example show how to use esp-dsp library to operate with matrices and vectors.

In real system, the emulated sensors values should be replace by the real sensors values. 
Then, in real system, a calibration phase should be implemented and after the calibration 
phase the state vector X and covariance matrix P should be saved and restored next time, when 
filter called. It will save time for initial phase.

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example Output

```
I (380) spi_flash: detected chip: gd
I (383) spi_flash: flash io: dio
W (387) spi_flash: Detected size(4096k) larger than the size in the binary image header(2048k). Using the size in the binary image header.
I (404) cpu_start: Starting scheduler on PRO CPU.
I (0) cpu_start: Starting scheduler on APP CPU.
I (413) main: Start Example.
Gyro error: 0.1 0.2 0.3

Calibration phase started:
Loop 1000 from 48000, State data : 0.998361 0.0152476 0.0211183 0.0509682 0.00463435 0.00919946 0.01352 0.998156 0.00619182 -0.000683098 -0.00117112 0.0063196 -0.000952147
Loop 2000 from 48000, State data : 0.941757 0.0877462 0.170681 0.276156 0.016951 0.0334337 0.0498731 0.998804 0.0162317 -0.00225174 0.00389746 0.0110905 -0.000489083
Loop 3000 from 48000, State data : 0.372216 0.24247 0.488788 0.750832 0.0323164 0.0642265 0.0962768 0.997295 0.0269348 -0.00481966 0.00605674 0.00779719 0.00494921
Loop 4000 from 48000, State data : 0.944725 0.0951798 0.165878 0.266308 0.0470155 0.0946294 0.141251 0.998213 0.0337875 -0.00704064 0.00422252 0.0124181 0.00485692
Loop 5000 from 48000, State data : 0.944287 0.102183 0.168344 0.263706 0.0597481 0.12037 0.179946 0.997498 0.0378795 -0.00841348 0.0053515 0.0104612 0.00666854
Loop 6000 from 48000, State data : 0.379137 0.258284 0.476853 0.74977 0.0697741 0.140876 0.210702 0.995523 0.0410914 -0.00911293 0.00510267 0.00764586 0.00913832
Loop 7000 from 48000, State data : 0.947048 0.112494 0.165382 0.251187 0.0773002 0.156661 0.233985 0.996358 0.0425222 -0.00994576 0.00353348 0.00969652 0.00849919
Loop 8000 from 48000, State data : 0.945556 0.120624 0.169212 0.250481 0.082995 0.16838 0.251493 0.995914 0.0433827 -0.0102827 0.0039165 0.00846988 0.00913964
Loop 9000 from 48000, State data : 0.381034 0.276875 0.4647 0.749805 0.0871785 0.177046 0.264439 0.995073 0.0441243 -0.0103565 0.00391002 0.0071649 0.00997719
Loop 10000 from 48000, State data : 0.946592 0.132375 0.168307 0.241068 0.0902326 0.183443 0.273873 0.995445 0.0443655 -0.0106197 0.00326065 0.00799655 0.00960479
Loop 11000 from 48000, State data : 0.944297 0.140946 0.172816 0.242015 0.0924658 0.188118 0.280807 0.995187 0.0445766 -0.0106806 0.00346742 0.00749049 0.00979064
Loop 12000 from 48000, State data : 0.378334 0.295555 0.452859 0.751285 0.0941005 0.191525 0.285886 0.994796 0.0447763 -0.0106511 0.0034986 0.00695604 0.0100697
Loop 13000 from 48000, State data : 0.944329 0.1532 0.172826 0.234315 0.0953075 0.194011 0.289567 0.994899 0.0448155 -0.0107384 0.00323858 0.00728781 0.00989103
Loop 14000 from 48000, State data : 0.941572 0.16194 0.177533 0.236008 0.0961574 0.195842 0.292257 0.994735 0.0448801 -0.0107422 0.00334282 0.0070798 0.00993131
Loop 15000 from 48000, State data : 0.373427 0.314041 0.441061 0.753256 0.0967899 0.197167 0.294234 0.994523 0.0449438 -0.0107112 0.00335898 0.00685221 0.0100213
Loop 16000 from 48000, State data : 0.941028 0.174338 0.177916 0.228952 0.0972752 0.198121 0.295664 0.994518 0.0449512 -0.0107403 0.0032445 0.00697761 0.00993463
Loop 17000 from 48000, State data : 0.937959 0.183145 0.18262 0.230959 0.0975883 0.198844 0.296697 0.994396 0.0449757 -0.0107339 0.0032963 0.00688409 0.00992845
Loop 18000 from 48000, State data : 0.3675 0.33233 0.429142 0.755207 0.0978324 0.199358 0.297465 0.994256 0.0450002 -0.0107104 0.00330113 0.00677742 0.00995297
Loop 19000 from 48000, State data : 0.937014 0.195546 0.183166 0.224089 0.0980371 0.199716 0.298023 0.994211 0.0450036 -0.0107164 0.00324275 0.00681997 0.00990755
Loop 20000 from 48000, State data : 0.933698 0.204372 0.187784 0.226223 0.0981422 0.200008 0.29842 0.994114 0.0450155 -0.0107065 0.00327025 0.00677405 0.00988484
Loop 21000 from 48000, State data : 0.361055 0.350426 0.417036 0.756916 0.0982358 0.200208 0.29872 0.99401 0.0450272 -0.0106858 0.00326787 0.00671759 0.0098834
Loop 22000 from 48000, State data : 0.932425 0.216717 0.188413 0.219358 0.0983318 0.200334 0.298938 0.993947 0.0450303 -0.0106798 0.00323017 0.00672916 0.00985372
Loop 23000 from 48000, State data : 0.928888 0.225543 0.19291 0.221546 0.0983561 0.200458 0.299082 0.993866 0.0450371 -0.0106664 0.00324701 0.00670354 0.00982584
Loop 24000 from 48000, State data : 0.354297 0.36833 0.404722 0.758292 0.0983915 0.200535 0.299203 0.993773 0.045044 -0.0106443 0.00324109 0.00666712 0.00981608
Loop 25000 from 48000, State data : 0.927316 0.237803 0.19359 0.214612 0.0984453 0.200572 0.299291 0.993709 0.0450468 -0.0106303 0.00321085 0.00666748 0.00979369
Loop 26000 from 48000, State data : 0.92357 0.246618 0.197954 0.216824 0.0984385 0.200632 0.299342 0.993629 0.0450514 -0.0106123 0.00322403 0.00665109 0.00976504
Loop 27000 from 48000, State data : 0.347305 0.386034 0.392194 0.759303 0.0984521 0.200663 0.299393 0.993546 0.0450564 -0.0105864 0.00321847 0.00662376 0.00975319
Loop 28000 from 48000, State data : 0.92171 0.258777 0.198672 0.209796 0.0984898 0.200666 0.299433 0.993475 0.045059 -0.0105663 0.00319366 0.00662077 0.00973562
Loop 29000 from 48000, State data : 0.917761 0.267574 0.202895 0.212019 0.0984714 0.2007 0.299446 0.9934 0.0450631 -0.0105437 0.00320563 0.0066091 0.00970881
Loop 30000 from 48000, State data : 0.340113 0.403531 0.379459 0.759933 0.0984762 0.200711 0.299466 0.993322 0.0450673 -0.0105132 0.00320031 0.00658594 0.00969804
Loop 31000 from 48000, State data : 0.915619 0.279623 0.203648 0.204891 0.0985076 0.2007 0.299484 0.993253 0.0450696 -0.0104878 0.00317637 0.00658294 0.00968329
Loop 32000 from 48000, State data : 0.91147 0.288396 0.207727 0.207121 0.0984838 0.200725 0.299481 0.99318 0.0450732 -0.0104599 0.00318786 0.00657435 0.00965871
Loop 33000 from 48000, State data : 0.332734 0.420812 0.366519 0.760177 0.0984844 0.20073 0.299492 0.993105 0.045077 -0.0104242 0.00318322 0.00655352 0.00964965
Loop 34000 from 48000, State data : 0.909049 0.300327 0.208511 0.199891 0.0985129 0.200714 0.299506 0.993034 0.0450794 -0.0103941 0.0031609 0.00655179 0.00963774
Loop 35000 from 48000, State data : 0.904704 0.309072 0.212442 0.202124 0.0984875 0.200736 0.299498 0.992959 0.0450829 -0.0103612 0.0031732 0.00654506 0.00961709
Loop 36000 from 48000, State data : 0.325179 0.437867 0.353384 0.760034 0.098487 0.200738 0.299504 0.992885 0.0450865 -0.0103208 0.00317079 0.00652607 0.00961171
Loop 37000 from 48000, State data : 0.325177 0.437848 0.353377 0.760049 0.0989011 0.200534 0.299617 0.992838 0.0450912 -0.0103039 0.00319877 0.00652725 0.00959415
Loop 38000 from 48000, State data : 0.325194 0.437821 0.353363 0.760064 0.099202 0.200388 0.299726 0.992838 0.0450926 -0.0102998 0.00320422 0.00652895 0.00959084
Loop 39000 from 48000, State data : 0.325211 0.437798 0.353354 0.760074 0.0994169 0.200278 0.299826 0.992816 0.045093 -0.0102979 0.00320263 0.0065278 0.00959847
Loop 40000 from 48000, State data : 0.325222 0.437784 0.353346 0.760081 0.0995754 0.200199 0.299886 0.992816 0.0450925 -0.0102967 0.00320118 0.00652683 0.00960376
Loop 41000 from 48000, State data : 0.325231 0.437773 0.353342 0.760085 0.0996929 0.200142 0.299945 0.992816 0.0450925 -0.0102966 0.00320043 0.00652627 0.00960631
Loop 42000 from 48000, State data : 0.325238 0.437769 0.353336 0.760087 0.0997802 0.200119 0.299978 0.992816 0.0450913 -0.0102965 0.00320007 0.0065261 0.00960773
Loop 43000 from 48000, State data : 0.32524 0.437762 0.353331 0.760093 0.099842 0.200089 0.299979 0.992816 0.0450913 -0.0102961 0.00320001 0.00652608 0.00960857
Loop 44000 from 48000, State data : 0.325241 0.43776 0.353327 0.760095 0.099883 0.200059 0.299979 0.992816 0.045089 -0.0102953 0.00319975 0.00652622 0.00960868
Loop 45000 from 48000, State data : 0.325243 0.437759 0.353325 0.760096 0.0999138 0.200045 0.299979 0.992816 0.0450878 -0.0102956 0.0031996 0.00652593 0.00960985
Loop 46000 from 48000, State data : 0.325245 0.437756 0.353324 0.760097 0.0999355 0.200042 0.299979 0.992816 0.0450878 -0.0102959 0.00319972 0.0065261 0.00960944
Loop 47000 from 48000, State data : 0.325246 0.437757 0.353322 0.760098 0.0999504 0.200039 0.299979 0.992816 0.0450878 -0.0102959 0.00319952 0.00652634 0.00960984
Calibration phase finished.

Regular calculation started:
Loop 1000 from 48000, State data : 0.9996 6.68374e-06 -7.71055e-05 0.028269 0.0999599 0.199742 0.298758 0.992397 0.0506049 -0.00981295 0.00516875 0.00517689 0.0102406
Loop 2000 from 48000, State data : 0.95186 0.0747648 0.154942 0.253704 0.0997667 0.199899 0.298983 0.992397 0.0504132 -0.0098162 0.00510809 0.00522702 0.0102249
Loop 3000 from 48000, State data : 0.395338 0.237819 0.486861 0.741698 0.0994409 0.200091 0.299095 0.992397 0.0502891 -0.00981838 0.00506923 0.00525921 0.0102147
Loop 4000 from 48000, State data : 0.952465 0.0877289 0.155254 0.247002 0.0992076 0.200299 0.299271 0.992397 0.0502054 -0.00981973 0.00504271 0.00528111 0.0102076
Loop 5000 from 48000, State data : 0.950016 0.096521 0.160702 0.249654 0.0990023 0.200426 0.299306 0.992397 0.05013 -0.00982108 0.00501929 0.00530046 0.0102013
Loop 6000 from 48000, State data : 0.389808 0.256786 0.476033 0.745321 0.0988748 0.200476 0.299331 0.992397 0.050078 -0.00982208 0.0050032 0.00531378 0.0101971
Loop 7000 from 48000, State data : 0.950306 0.109383 0.161046 0.242937 0.0987883 0.200581 0.299444 0.992397 0.0500379 -0.00982289 0.0049906 0.00532416 0.0101938
Loop 8000 from 48000, State data : 0.947646 0.118155 0.166392 0.2456 0.0986931 0.200633 0.299434 0.992397 0.0499987 -0.00982366 0.00497852 0.00533416 0.0101903
Loop 9000 from 48000, State data : 0.383995 0.275557 0.464951 0.748623 0.0986473 0.200627 0.299425 0.992397 0.0499702 -0.00982415 0.00496994 0.00534126 0.0101879
Loop 10000 from 48000, State data : 0.94764 0.130939 0.166769 0.238794 0.0986203 0.200694 0.299509 0.992397 0.0499475 -0.00982454 0.004963 0.00534698 0.0101861
Loop 11000 from 48000, State data : 0.944771 0.139703 0.171999 0.241471 0.0985699 0.200714 0.299481 0.992397 0.0499252 -0.00982467 0.00495605 0.00535274 0.0101844
Loop 12000 from 48000, State data : 0.377949 0.294161 0.453622 0.751566 0.0985571 0.200685 0.299459 0.992397 0.0499092 -0.00982467 0.00495124 0.0053567 0.0101832
Loop 13000 from 48000, State data : 0.944475 0.152413 0.172408 0.234549 0.0985539 0.200736 0.299532 0.992397 0.0498962 -0.00982467 0.00494735 0.0053599 0.0101823
Loop 14000 from 48000, State data : 0.941398 0.16117 0.177516 0.237239 0.0985215 0.200743 0.299498 0.992397 0.0498826 -0.00982467 0.0049434 0.00536316 0.0101813
Loop 15000 from 48000, State data : 0.371694 0.312599 0.442052 0.754132 0.0985222 0.200704 0.299474 0.992397 0.049874 -0.00982467 0.00494084 0.0053653 0.0101808
Loop 16000 from 48000, State data : 0.940819 0.173801 0.177954 0.230187 0.0985277 0.20075 0.299544 0.992397 0.0498671 -0.00982467 0.00493887 0.00536698 0.0101804
Loop 17000 from 48000, State data : 0.937532 0.182552 0.182939 0.232897 0.0985023 0.200752 0.299507 0.992397 0.0498602 -0.00982467 0.0049367 0.0053688 0.0101799
Loop 18000 from 48000, State data : 0.365235 0.33087 0.43025 0.756316 0.0985084 0.200708 0.299482 0.992397 0.0498562 -0.00982467 0.00493555 0.0053698 0.0101796
Loop 19000 from 48000, State data : 0.936669 0.195102 0.183407 0.225717 0.0985175 0.200754 0.299549 0.992397 0.0498532 -0.00982467 0.00493474 0.00537051 0.0101794
Loop 20000 from 48000, State data : 0.933178 0.203841 0.188264 0.22844 0.0984953 0.200754 0.299511 0.992397 0.0498502 -0.00982467 0.00493366 0.00537141 0.010179
Loop 21000 from 48000, State data : 0.35858 0.348967 0.41822 0.758113 0.0985034 0.200709 0.299484 0.992397 0.0498495 -0.00982467 0.00493334 0.00537172 0.0101788
Loop 22000 from 48000, State data : 0.93203 0.216304 0.188763 0.221136 0.0985129 0.200755 0.299549 0.992397 0.0498497 -0.00982467 0.00493327 0.00537182 0.0101787
Loop 23000 from 48000, State data : 0.928336 0.225027 0.193488 0.22387 0.0984918 0.200754 0.29951 0.992397 0.0498497 -0.00982467 0.00493298 0.00537209 0.0101787
Loop 24000 from 48000, State data : 0.351735 0.366882 0.405969 0.759519 0.0985006 0.200707 0.299482 0.992397 0.0498508 -0.00982467 0.00493324 0.00537189 0.0101787
Loop 25000 from 48000, State data : 0.926905 0.237397 0.194017 0.216443 0.0985107 0.200755 0.299545 0.992397 0.0498526 -0.00982467 0.00493366 0.00537159 0.0101787
Loop 26000 from 48000, State data : 0.92301 0.246099 0.198608 0.219185 0.0984902 0.200753 0.299511 0.992397 0.0498537 -0.00982467 0.00493391 0.00537146 0.0101787
Loop 27000 from 48000, State data : 0.344708 0.384605 0.393502 0.760534 0.0984992 0.200706 0.299488 0.992397 0.0498556 -0.00982467 0.00493459 0.00537092 0.0101787
Loop 28000 from 48000, State data : 0.921297 0.258369 0.199166 0.211636 0.0985091 0.200757 0.299555 0.992397 0.0498579 -0.00982467 0.00493535 0.00537033 0.0101787
Loop 29000 from 48000, State data : 0.917204 0.267048 0.203621 0.214385 0.0984891 0.200754 0.29952 0.992397 0.0498601 -0.00982467 0.00493597 0.0053698 0.0101787
Loop 30000 from 48000, State data : 0.337501 0.402129 0.380825 0.761156 0.0984981 0.200706 0.299491 0.992397 0.0498626 -0.00982467 0.00493691 0.00536903 0.0101787
Loop 31000 from 48000, State data : 0.915208 0.279212 0.204208 0.206723 0.0985072 0.200758 0.299553 0.992397 0.0498654 -0.00982467 0.00493789 0.00536824 0.0101787
Loop 32000 from 48000, State data : 0.910918 0.287861 0.208526 0.209479 0.0984873 0.200754 0.299515 0.992397 0.0498676 -0.00982467 0.00493879 0.00536752 0.0101787
Loop 33000 from 48000, State data : 0.330116 0.419445 0.367945 0.761385 0.0984966 0.200704 0.299489 0.992397 0.0498701 -0.00982467 0.00493986 0.00536667 0.0101787
Loop 34000 from 48000, State data : 0.908641 0.299912 0.209141 0.201703 0.0985056 0.200757 0.299551 0.992397 0.0498728 -0.00982467 0.00494093 0.00536582 0.0101787
Loop 35000 from 48000, State data : 0.904158 0.308528 0.213318 0.204462 0.0984862 0.200752 0.299518 0.992397 0.0498751 -0.00982467 0.00494188 0.00536507 0.0101787
Loop 36000 from 48000, State data : 0.322561 0.436541 0.354869 0.761219 0.0984953 0.200702 0.299495 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 37000 from 48000, State data : 0.322549 0.436508 0.354868 0.761243 0.0989076 0.200506 0.299634 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 38000 from 48000, State data : 0.322568 0.436485 0.354851 0.761257 0.099208 0.200371 0.299726 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 39000 from 48000, State data : 0.322581 0.436466 0.354841 0.761267 0.0994207 0.200267 0.299799 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 40000 from 48000, State data : 0.322592 0.436454 0.354831 0.761274 0.099581 0.200208 0.299849 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 41000 from 48000, State data : 0.322601 0.436443 0.354826 0.761278 0.099701 0.20015 0.299901 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 42000 from 48000, State data : 0.322606 0.436435 0.35482 0.761283 0.0997844 0.200101 0.299931 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 43000 from 48000, State data : 0.322611 0.436429 0.35482 0.761285 0.0998457 0.200072 0.299961 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 44000 from 48000, State data : 0.322615 0.436425 0.354818 0.761286 0.0998883 0.200057 0.29999 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 45000 from 48000, State data : 0.322617 0.436423 0.354816 0.761287 0.099912 0.200042 0.300002 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 46000 from 48000, State data : 0.322617 0.436421 0.354815 0.761289 0.0999343 0.20003 0.300002 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Loop 47000 from 48000, State data : 0.322618 0.436421 0.354814 0.761289 0.0999444 0.20003 0.300002 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Final State data : 0.322618 0.436421 0.354814 0.761289 0.0999518 0.20003 0.300002 0.992397 0.0498778 -0.00982467 0.00494296 0.00536423 0.0101787
Estimated error : 0.0999518 0.20003 0.300002
Difference between real and estimated errors : 4.81904e-05 -2.99811e-05 -2.17557e-06

Expected Euler angels (degree) : -29.8215 64.9692 150.241
Calculated Euler angels (degree) : -35.1525 63.3067 156.167
```

                                    

readme of lyrat_board_app example

                                        
                                        # ESP-DSP LyraT Board audio processing application

The demo applications are developed for the ESP32-LyraT development board and demonstrate the usage of IIR filters from the ESP-DSP library.
This example showcases how to use IIR filter functionality to process audio stream data.
To hear the audio please connect headphones or speakers to the ESP32-LyraT audio output.
The example performs the following steps:

1. Read samples from a file
    * read samples from file
    * write audio samples to the triple buffer
2. Process audio samples
    * process volume/bass/treble
    * apply digital limiter to the audio data
    * control audio buffer overflow
3. Pass samples to the audio codec 

To control the volume/bass/treble, please select the value by press 'Set' button and adjust the value by '+/-' buttons.

## The Triple Audio Buffer

In audion processing, it's possible to have situation when one task write data to the processing buffer (processing task), and another task read data from the same buffer, and still in reading process.
Triple buffering is a technique used in audio processing to minimize latency and ensure smooth playback. It involves using three buffers to store audio data. Here's a description of how it works:

* Buffer A: This buffer holds the audio data that is currently being processed by the audio system. It is typically filled with samples from the audio source and processed in real-time.

* Buffer B: When Buffer A is full, the audio system begins reading from Buffer A and starts processing the data. At the same time, Buffer B is filled with new audio samples from the source.

* Buffer C: Once Buffer B is full, the audio system switches its attention to Buffer B and continues processing data. Buffer C is then filled with the latest audio samples.

The cycle continues, with the audio system always processing the data from a buffer while the other two buffers are being filled. This approach helps ensure a continuous and uninterrupted audio playback, as there is always a buffer ready to be processed. It reduces the chances of audio glitches or dropouts caused by delays in reading or processing the audio data.

Triple buffering is particularly useful when working with real-time audio processing applications, where low latency and uninterrupted playback are crucial.

## Audio Processing Flow

The audio processing flow contains next blocks:
1. Audio processing task
    * Read data from file and store to the triple buffer
    * Read from triple buffer and concert data from int16_t to float
    * Process bass
    * Process treble
    * Process volume
    * Apply digital limiter
    * Convert data from float to int16_t and store to the triple buffer
2. Audio output task
    * Write data from triple buffer to audio codec
3. Buttons control task
    * React on buttons and adjust the control values
    * Calculates IIR filter coefficients

## How to use the example

### Hardware required

This example require LyraT development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

                                    

readme of matrix example

                                        
                                        # Matrix Operations Example 

(See the README.md file in the upper level 'examples' directory for more information about examples.)

This example demonstrates how to use Mat class functionality from esp-dsp library. Example does the following steps:

1. Initialize a matrix A and matirx x
2. Calculate matrix b: b = A*x
3. Find roots x1_: A*x1_ = b, with different methods
4. Print result

## How to use example

### Hardware required

This example does not require any special hardware, and can be run on any common development board.

### Configure the project

Under Component Config ---> DSP Library ---> DSP Optimization, it's possible to choose either the optimized or ANSI implementation, to compare them.

### Build and flash

Build the project and flash it to the board, then run monitor tool to view serial output (replace PORT with serial port name):

```
idf.py -p PORT flash monitor
```

(To exit the serial monitor, type ``Ctrl-]``.)

See the Getting Started Guide for full steps to configure and use ESP-IDF to build projects.

## Example output

Here is an typical example console output. 

```
I (215) main: Start Example.
I (215) main: Original vector x:
0
1
2
I (215) main: Solve result:
0
1
2
I (215) main: Roots result:
0
1
2
I (215) main: End Example.

```

                                    

Links

Supports all targets

License: Apache-2.0

To add this component to your project, run:

idf.py add-dependency "espressif/esp-dsp^1.4.12"

or download archive

Dependencies

  • ESP-IDF >=4.2
  • Examples:

    applications/azure_board_apps/apps/3d_graphics

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:applications/azure_board_apps/apps/3d_graphics"

    or download archive (80 bytes)

    applications/azure_board_apps/apps/kalman_filter

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:applications/azure_board_apps/apps/kalman_filter"

    or download archive (82 bytes)

    applications/lyrat_board_app

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:applications/lyrat_board_app"

    or download archive (119 bytes)

    applications/spectrum_box_lite

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:applications/spectrum_box_lite"

    or download archive (83 bytes)

    apps/3d_graphics

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:apps/3d_graphics"

    or download archive (80 bytes)

    apps/kalman_filter

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:apps/kalman_filter"

    or download archive (82 bytes)

    azure_board_apps/apps/3d_graphics

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:azure_board_apps/apps/3d_graphics"

    or download archive (80 bytes)

    azure_board_apps/apps/kalman_filter

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:azure_board_apps/apps/kalman_filter"

    or download archive (82 bytes)

    basic_math

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:basic_math"

    or download archive (57 bytes)

    dotprod

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:dotprod"

    or download archive (57 bytes)

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:fft"

    or download archive (57 bytes)

    fft4real

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:fft4real"

    or download archive (57 bytes)

    fft_window

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:fft_window"

    or download archive (57 bytes)

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:fir"

    or download archive (57 bytes)

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:iir"

    or download archive (57 bytes)

    kalman

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:kalman"

    or download archive (83 bytes)

    lyrat_board_app

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:lyrat_board_app"

    or download archive (119 bytes)

    matrix

    more details

    To create a project from this example, run:

    idf.py create-project-from-example "espressif/esp-dsp^1.4.12:matrix"

    or download archive (57 bytes)

    Stats

    • Archive size
      Archive size: 2.19 MB
    • Downloaded in total
      Downloaded in total 62.2k times
    • Downloaded this version
      This version: 9.4k times

    Badge

    espressif/esp-dsp version: 1.4.12
    |