# ScioSense ENS160 Sensor
[](https://github.com/K0I05)
[](/LICENSE)
[](https://en.wikipedia.org/wiki/C_(programming_language))
[](https://docs.espressif.com/projects/esp-idf/en/stable/esp32/index.html)
[](https://code.visualstudio.com/)
[](https://platformio.org/)
[](https://registry.platformio.org/libraries/k0i05/esp_ens160)
[](https://components.espressif.com/components/k0i05/esp_ens160)
This ESP32 espressif IoT development framework (esp-idf) i2c peripheral driver was developed for the ScioSense ENS160 digital metal-oxide multi-gas sensor.  Information on features and functionality are documented and can be found in the `ens160.h` header file and in the `documentation` folder.
## Repository
The component is hosted on github and is located here: <https://github.com/K0I05/ESP32-S3_ESP-IDF_COMPONENTS/tree/main/components/peripherals/i2c/esp_ens160>
## General Usage
To get started, simply copy the component to your project's `components` folder and reference the `ens160.h` header file as an include.  The component includes documentation for the peripheral such as the datasheet, application notes, and/or user manual where applicable.
```text
components
└── esp_ens160
    ├── CMakeLists.txt
    ├── README.md
    ├── LICENSE
    ├── idf_component.yml
    ├── library.json
    ├── documentation
    │   └── datasheets, etc.
    ├── include
    │   └── ens160_version.h
    │   └── ens160.h
    └── ens160.c
```
## Basic Example
Once a driver instance is instantiated the sensor is ready for usage as shown in the below example.   This basic implementation of the driver utilizes default configuration settings and makes a measurement request from the sensor at user defined interval and prints the results.
```c
#include <ens160.h>
void i2c0_ens160_task( void *pvParameters ) {
    // initialize the xLastWakeTime variable with the current time.
    TickType_t          last_wake_time   = xTaskGetTickCount ();
    //
    // initialize i2c device configuration
    ens160_config_t dev_cfg          = I2C_ENS160_CONFIG_DEFAULT;
    ens160_handle_t dev_hdl;
    //
    // init device
    ens160_init(i2c0_bus_hdl, &dev_cfg, &dev_hdl);
    if (dev_hdl == NULL) {
        ESP_LOGE(APP_TAG, "ens160 handle init failed");
        assert(dev_hdl);
    }
    //
    uint16_t startup_time = 0; // seconds
    //
    // task loop entry point
    for ( ;; ) {
        ESP_LOGI(APP_TAG, "######################## ENS160 - START #########################");
        //
        // handle sensor
        ens160_validity_flags_t dev_flag;
        if(ens160_get_validity_status(dev_hdl, &dev_flag) == ESP_OK) {
            // validate device status
            if(dev_flag == ENS160_VALFLAG_NORMAL) {
                ens160_air_quality_data_t aq_data;
                esp_err_t result = ens160_get_measurement(dev_hdl, &aq_data);
                if(result != ESP_OK) {
                    ESP_LOGE(APP_TAG, "ens160 device read failed (%s)", esp_err_to_name(result));
                } else {
                    ens160_aqi_uba_row_t uba_aqi = ens160_aqi_index_to_definition(aq_data.uba_aqi);
                    ESP_LOGW(APP_TAG, "index    %1x (%s)", aq_data.uba_aqi, uba_aqi.rating);
                    ESP_LOGW(APP_TAG, "tvco     %d (0x%04x)", aq_data.tvoc, aq_data.tvoc);
                    ESP_LOGW(APP_TAG, "etoh     %d (0x%04x)", aq_data.etoh, aq_data.etoh);
                    ESP_LOGW(APP_TAG, "eco2     %d (0x%04x)", aq_data.eco2, aq_data.eco2);
                }
                //
                ens160_air_quality_raw_data_t aq_raw_data;
                result = ens160_get_raw_measurement(dev_hdl, &aq_raw_data);
                if(result != ESP_OK) {
                    ESP_LOGE(APP_TAG, "ens160 device read failed (%s)", esp_err_to_name(result));
                } else {
                    ESP_LOGW(APP_TAG, "ri-res 0 %lu", aq_raw_data.hp0_ri);
                    ESP_LOGW(APP_TAG, "ri-res 1 %lu", aq_raw_data.hp1_ri);
                    ESP_LOGW(APP_TAG, "ri-res 2 %lu", aq_raw_data.hp2_ri);
                    ESP_LOGW(APP_TAG, "ri-res 3 %lu", aq_raw_data.hp3_ri);
                    ESP_LOGW(APP_TAG, "bl-res 0 %lu", aq_raw_data.hp0_bl);
                    ESP_LOGW(APP_TAG, "bl-res 1 %lu", aq_raw_data.hp1_bl);
                    ESP_LOGW(APP_TAG, "bl-res 2 %lu", aq_raw_data.hp2_bl);
                    ESP_LOGW(APP_TAG, "bl-res 3 %lu", aq_raw_data.hp3_bl);
                }
            } else if(dev_flag == ENS160_VALFLAG_WARMUP) {
                ESP_LOGW(APP_TAG, "ens160 device is warming up (180-sec wait [%u-sec])", startup_time);
                startup_time = startup_time + I2C0_TASK_SAMPLING_RATE;
            } else if(dev_flag == ENS160_VALFLAG_INITIAL_STARTUP) {
                ESP_LOGW(APP_TAG, "ens160 device is undrgoing initial starting up (3600-sec wait [%u-sec])", startup_time);
                startup_time = startup_time + I2C0_TASK_SAMPLING_RATE;
            } else if(dev_flag == ENS160_VALFLAG_INVALID_OUTPUT) {
                ESP_LOGW(APP_TAG, "ens160 device signals are giving unexpected values");
            }
        }
        //
        ESP_LOGI(APP_TAG, "######################## ENS160 - END ###########################");
        //
        //
        // pause the task per defined wait period
        vTaskDelaySecUntil( &last_wake_time, I2C0_TASK_SAMPLING_RATE );
    }
    //
    // free resources
    ens160_delete( dev_hdl );
    vTaskDelete( NULL );
}
```
Copyright (c) 2024 Eric Gionet (<gionet.c.eric@gmail.com>)
                            
                        
                    
                
            idf.py add-dependency "k0i05/esp_ens160^1.2.7"